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Abstract. We study the properties of eigenstates of an operating quantum computer which simulates
the dynamical evolution in the regime of quantum chaos. Even if the quantum algorithm is polynomial
in number of qubits ng, it is shown that the ideal eigenstates become mixed and strongly modified by
static imperfections above a certain threshold which drops ezponentially with ng. Above this threshold the
quantum eigenstate entropy grows linearly with ng but the computation remains reliable during a time
scale which is polynomial in the imperfection strength and in ng.

PACS. 03.67.Lx Quantum computation — 05.45.Mt Semiclassical chaos (“quantum chaos”) —

24.10.Cn Many-body theory

Feynman suggested that a quantum computer could sim-
ulate quantum mechanical systems exponentially faster
than a classical computer [1] while Shor significantly ex-
tended this class by his ground-breaking algorithm for
integer factorization [2]. More recently, a few quantum
algorithms which achieve the exponential speedup have
been developed for various quantum and classical physi-
cal systems, ranging from some many-body problems [3]
to spin lattices [4], and models of quantum chaos [5-7]. It
is important to study the stability of these algorithms in
the presence of concrete models of decoherence and quan-
tum computer imperfections [8,9]. The first investigations
have shown a certain stability of quantum evolution and
algorithms with respect to decoherence effects [10], noisy
gates [11-13], and static imperfections [7,9]. These studies
have focused on the fidelity of quantum computation as a
function of time during the realization of a given quantum
algorithm.

In this paper, we study the properties of the eigen-
states of an operating quantum computer in the presence
of static imperfections. The computer is simulating effi-
ciently the time evolution of a dynamical quantum system
described by the sawtooth map [7]. We focus on the regime
of quantum ergodicity, in which eigenfunctions are given
by a complex superposition of a large number of quantum
register states. In this regime, the effect of a perturbation
is enhanced by a factor which is exponential in the num-
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ber of qubits. This phenomenon has close links with the
enormous enhancement of weak interactions in heavy nu-
clei [14]. In the following we illustrate this general effect
for the case of static imperfections in a realistic model of
quantum computer hardware.

The classical sawtooth map is given by

n=n+k(@—m), 0=0+1Tn, (1)
where (n, ) are conjugated action-angle variables (0 <
0 < 2m), and the bars denote the variables after one
map step. Introducing the rescaled momentum variable
p =Tn, one can see that the classical dynamics depends
only on the single parameter K = kT, so that the mo-
tion is stable for —4 < K < 0 and completely chaotic for
K < —4 and K > 0. The quantum evolution for one map
iteration is described by a unitary operator U acting on
the wave function :

E _ [)—w _ efiTﬁQ/Zeik(éfw)Qﬂw’ (2)
where 1 = —10/00 (we set h = 1). The classical limit cor-
responds to k — oo, T'— 0, and K = kT = const. In this
paper, we study the quantum sawtooth map (2) in the
regime of quantum ergodicity, with K =2, —-n <p <
(torus geometry). The classical limit is obtained by in-
creasing the number of qubits ng = logy N (N number of
levels), with T' = 27/N (k = K/T, —N/2 < n < N/2).
The quantum algorithm [7] simulates with exponential ef-
ficiency the quantum dynamics (2) using a register of n,
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qubits. Tt is based on the forward/backward quantum
Fourier transform [15] between the § and n representations
and requires 2n, Hadamard gates and 3n§ —ngq controlled-
phase-shift gates per map iteration [7].

Following [9], we model the quantum computer hard-
ware as an one-dimensional array of qubits (spin halves)
with static imperfections, i.e. fluctuations in the individ-
ual qubit energies and residual short-range inter-qubit
couplings. The model is described by the many-body
Hamiltonian

Hy = (Ao +6:)67 + Y 6767, (3)

i i<j

where the &; are the Pauli matrices for the qubit ¢, and Aq
is the average level spacing for one qubit. The second sum
in (3) runs over nearest-neighbor qubit pairs, and d;, J;;
are randomly and uniformly distributed in the intervals
[—d/2,6/2] and [—J, J], respectively. We study numeri-
cally the many-qubit eigenstates of the quantum computer
(3) running the quantum algorithm described above. The
algorithm is realized by a sequence of instantaneous and
perfect one- and two-qubit gates, separated by a time
interval 75, during which the Hamiltonian (3) gives un-
wanted phase rotations and qubit couplings. We assume
that the average phase accumulation given by 4 is elim-
inated, e.g. by means of refocusing techniques [16].

Since the evolution operator (2) remains periodic in
the presence of static imperfections, U(©) (1 4+T) = U (r)
(e = 07g), all the informations about the system dynam-

ics are included in the quasienergy eigenvalues )\((f ) and

((;)

eigenstates ¢q’ of the Floquet operator:

TOT)B) = exp (X)) 010, (4)

In Figure 1 (top left) we show the parametric dependence
of the quasienergy eigenvalues on the dimensionless imper-
fection strength €, for a given realization of §;, at J = 0
and for n, = 9 qubits. One can clearly see the presence of
avoided crossings, a typical signature of ergodic dynam-
ics. The variation of a given quasienergy eigenstate with e
is illustrated by the Husimi functions [17] of Figure 1.
At € = 0 the eigenfunctions display a complex pattern
delocalized in the phase space (see Fig. 1 top right). The
symmetries of the Husimi functions (§ — 27 —6, p — —p)
are destroyed when € # 0 [18]. The eigenfunctions in the
presence of imperfections give a good representation of
the unperturbed (¢ = 0) eigenfunctions of the quantum
sawtooth map (2) at most until the first avoided crossing.
After that one cannot make a one to one correspondence
with the unperturbed case. This is confirmed by the last
two Husimi functions of Figure 1, taken for the chosen
level in the vicinity of the first avoided crossing (bottom
left, e = 4x 10~%) and for a stronger imperfection strength
(bottom right, ¢ = 1073). In the first case there is still
some similarity with the corresponding Husimi function
at € = 0, while in the latter case any resemblance has
been effaced.

A more quantitative indication of the similarity be-
tween exact and perturbed eigenstates is provided by the
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Fig. 1. Parametric dependence of the quasienergy eigenval-
ues on the imperfection strength e for a given random realiza-
tion of d;, at J = 0, ng = 9 (top left); for the thick-line level
the corresponding Husimi functions in action-angle variables
(p,0) (—m < p < 7 -vertical axis- and 0 < # < 27 -horizontal
axis-) are given at ¢ = 0 (top right), ¢ = 4 x 10™* (bottom
left), and ¢ = 1073 (bottom right). We choose the ratio of
the action-angle uncertainties s = Ap/Af = TAn/A0 = 1
(ApA# = T'/2). Black corresponds to the minimum of the prob-
ability distribution and white to the maximum (color plots are
available at http://arXiv.org/abs/quant-ph/0112132).

quantum eigenstate entropy,

N
Sa == Pap108s Pag, (5)

B=1
where pos = |<¢(BO)|¢(§))|2. In this way S, = 0 if ¢
coincides with one eigenstate at ¢ = 0, S, = 1 if (b((f )
is equally composed of two ideal (¢ = 0) eigenstates,
and the maximal value S, = n4 is obtained if all gb(ﬁo)

(86 = 1,..,N = 2") contribute equally to ¢$§>. In or-
der to reduce statistical fluctuations, we average S, over
a =1,..,N and over 3 < Np < 10% random realiza-
tions of d;, J;;. In this way the total number of eigenstates
is NpN ~ 10* The variation of the average quantum
entropy S with € is shown in Figure 2. It demonstrates
that S grows from S = 0 at ¢ = 0 to a saturation value
S & ngq corresponding to maximal mixing of unperturbed
eigenstates. We study this crossover for 4 < ng, < 12 at
J = 0 and find that the mixing takes place at smaller
values when n, increases. In Figure 3 we show that the
critical imperfection strength €, at which S = 1 drops ex-
ponentially with the number of qubits. This exponential
dependence holds also in a simple toy model with a single
impurity, in which an energy fluctuation § is switched on
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Fig. 2. Quantum eigenstate entropy S as a function of the
scaled imperfection strength € for J = 0, ngy = 5 (triangles),
7 (diamonds), 9 (empty squares), and 11 (circles), for J = 4,
ng = 9 (filled squares), and for the single imperfection model
at ng = 11 (stars). The straight lines give the theoretical es-
timates 2° = A€’ N (solid line) and 29 = Be’n)N (taken at
nq = 11, dashed line), with the numerically determined con-
stants A = 0.37 and B = 0.25.
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Fig. 3. Dependence of the coupling €, at which S =1 on the
number of qubits, for J = 0 (circles) and for the single imper-
fection model (squares). The lines give the theoretical depen-
dences e, = A”Y2N71/2 (above) and ¢, = 371/2N71/2n55/2
(below), with the constants A and B obtained from the data
of Figure 2.

for a single qubit and only for one time interval 7, between
two elementary gates (e.g., after the first quantum Fourier
transform).

The exponential drop of the threshold €, can be under-
stood following a theory originally developed for the parity
breaking induced by weak interaction in the scattering of
polarized neutrons on complex nuclei [14]. Indeed, due to
quantum chaos in (2), the Floquet problem (4) has ergodic
eigenstates, ngSXO) = Zf\]n:l c&m)um, with u,, being quan-
tum register states and cg n) randomly fluctuating compo-
nents, with |c&m)| ~ 1/+/N. For the model with a single
imperfection 667, acting on a time interval 7, the tran-

i
sition matrix elements between unperturbed eigenstates
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have a typical value:

~e¢/VN.
(6)

The last estimate for Viyp results from the sum of N un-
correlated terms. Since the spacing between quasienergy
eigenstates is AF ~ 1/N, the threshold for the breaking
of perturbation theory can be estimated as

N
Viyp ~ ’<¢(ﬁo)‘ 6oA'iZTg ‘Qﬁ&o))’ —¢€ Z Cg‘m)c(ﬁm)*
m=1

Vigp/AE ~ EX\/N ~ 1. (7)
The analytical result e, ~ 1/ VN is confirmed by the nu-
merical data in Figure 3. The same theoretical argument
gives an exponential drop of €, for the static imperfec-
tion model (3). In this case, the estimate can be obtained
with § — §,/ng (sum of n, random detunings J;) and
Ty — Tghg ~ Tgno. This gives e, ~ N=12p5/% again in
good agreement with the data of Figure 3. For the case
J = 0, the threshold €, decreases by a factor ~ 1.5 at
ne = 9 with respect to the J = 0 case (see Fig. 2), since
additional qubit couplings are introduced. We note that
the hypersensitivity to perturbations has been proposed as
a distinctive feature of chaotic dynamics [19]. However, the
authors of reference [19] considered the effect of a stochas-
tic environment, while we consider a closed Hamiltonian
system.

In the mixing regime (e > €,,) the number M of unper-

)

turbed eigenfunctions (j)(ﬁo , which have a significant pro-

jection over a given qb((f ), is exponentially large. For the sin-
gle imperfection model one has M ~ 2% ~ I'/AE ~ 2N,
since the mixing takes place inside a Breit-Wigner width
given by the Fermi golden rule: I' ~ Vé,p JAE ~ €%. The
above estimate for M is in agreement with the numerical
data of Figure 2 and is similar to that one used in [9,20]
for onset of quantum chaos in the static model (3). We em-
phasize that this estimate implies that the quantum eigen-
state entropy grows linearly with the number of qubits n,.

In the Fermi golden rule regime, the lifetime (mea-
sured in number of kicks) of an unperturbed eigenfunction
is given by 7, ~ 1/I" oc 1/€? [9,20]. If the imperfections
are described by the model (3), one has 7, ~ 1/(e*nj).
Therefore a reliable quantum computing of the dynamical
evolution of the model (2) is possible up to a time scale
which drops only algebraically with the number of qubits,
in agreement with the findings of reference [7]. In Fig-
ure 4 we show the fidelity of quantum evolution, f(¢) =
|(p©) ()[4 (#))|2. In the top figures, the initial state is an
unperturbed eigenstate. For € < ¢, (S < 1), the fidelity
is very close to 1 at all times, since the eigenstates are
not mixed by the imperfections (see Fig. 4a). On the con-
trary, in the Fermi golden rule regime € >> €, a perturbed
eigenstate, when decomposed into the unperturbed eigen-
states, contains a large number of components (S > 1).
The distribution of these components over energy, called
local density of states, has a typical Breit-Wigner shape
of width I'. Since its Fourier transform drives the fidelity
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Fig. 4. Fidelity as a function of time, for nq = 9 qubits, J = 0,
e = 107" (left) and ¢ = 3 x 107 (right), with initial wave
function a Floquet eigenstate at e = 0 (top) or a momentum
eigenstate (bottom). The dashed lines show the exponential
decay f(t) = exp(—t/ts), with t¢ ~ 7.

decay [9,20], one obtains f(t) = exp(—It), in agreement
with the data of Figure 4b. The exponential decay con-
tinues up to a value f ~ 1/2° given by the inverse of
the number of levels mixed inside the Breit-Wigner width.
The case in which the initial wave function 1(0) is a mo-
mentum eigenstate is considered in Figures 4c and 4d. In
this case 1(0) projects significantly over order N unper-
turbed eigenfunctions. Therefore, for € < €,, f(t) displays
a Gaussian decay (see Fig. 4c, and also Ref. [7]): in this
regime the imperfections do not change significantly the
eigenstates (S < 1), but the initial state is composed of
many eigenstates and a Gaussian decay of f(t) is expected
from perturbation theory [21,22]. Figure 4d shows that in
the Fermi golden rule regime (¢ > e,) the fidelity de-
cays exponentially, with rate I" given by the Breit-Wigner
width [22]. The decays stops when f ~ 1/N, namely
when f approaches the inverse of the dimension of the
Hilbert space.

In summary, we have shown that the eigenstates of
a quantum computer simulating a system with quantum
chaos are hypersensitive to static imperfections: they are
significantly different from the exact eigenfunctions above
an imperfection strength threshold which drops exponen-
tially with the number of qubits. Nevertheless, it is re-
markable that quantum computation remains reliable up
to a time scale which drops only algebraically with the
number of qubits. However, a large scale implementation
would require quantum error-correcting techniques [8,23].
We note that, differently from the usual models of ex-
ternal decoherence, the effective decoherence due to the
inter-qubit residual interaction is characterized by strong
correlations, which need to be taken into account in any
practical fault-tolerant implementation of a quantum com-
putation [24,25].
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